

PRODUCT CATALOGUE

Clutches > and Brakes

NFF Brake

for Compact Industrial and Crane Applications with a high protection against harsh environment

ENGINEERING >THAT MOVES THE WORLD

Applications

- \checkmark Holding- and Working brake variations for industrial Application
- \checkmark Usable for dockside-, harbour and marine crane brake suitable for seawater environment

Standard Features Coil Body with coil : Thermal class 155, nitrocarburated and postoxidated Outer Body Manufactured in sea water proof aluminium with large inspection holes : Special protection: nitrocarburated and postoxidated Armature Plate : Brake Flange Special protection: nitrocarburated and postoxidated : Friction Lining Low wear rate with low torque fade over a high range of temperature. High : thermal capacity End Cover Manufactured in sea water proof aluminium with provision for standstill heater ٠ Hub Nitrocarburated and postoxidated Fixings screws • All stainless steel Flying Leads 1 metre long : Seals For high protection

Optional Extras

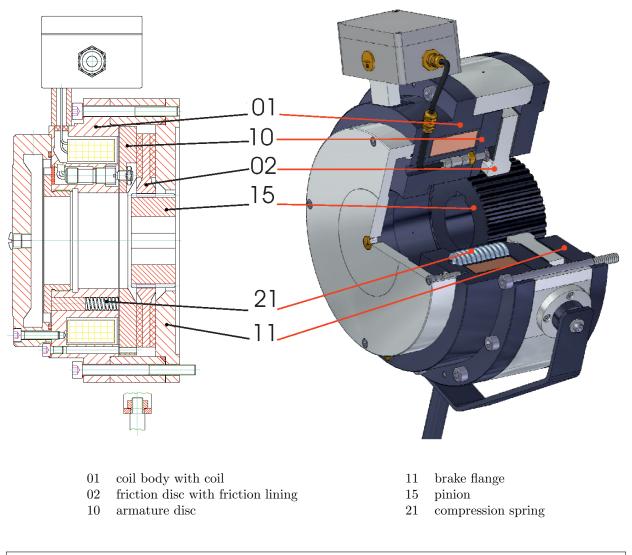
- \checkmark Simple adjustment with adjusting ring
- \checkmark Hand release lever
- \checkmark Tacho / Endcover provision
- \checkmark Terminal Box
- \checkmark Micro switch to monitor switching states or wear monitoring
- \checkmark Standstill heater

Switching modules

- \checkmark ~ Half wave- or Full wave
- \checkmark Quick switching units
- \checkmark Built in terminal box or attached for mounting into the motor terminal box

Advantages

- \checkmark Comprehensive range 20 10.000 Nm
- \checkmark Simple assembly to motor, no dismantling of brake required.
- \checkmark Concentricity through body for tacho fixing
- \checkmark ~ No setting required when changing armature disc and friction disc
- \checkmark Compatibility of consumable spares
- \checkmark Simple maintenance, once only adjustment by shim removal
- \checkmark Positive feel hand release mechanism
- \checkmark Proven reliable design
- \checkmark Sealed inspection holes for air gap or lining wear
- \checkmark Extremely low inertia
- \checkmark High heat dissipation
- \checkmark ~ Free from axial loads when braking and running
- \checkmark Suitable for vertical mounting, please consult GKN Stromag Dessau GmbH
- \checkmark Many optional extras available
- \checkmark Facilities to design to customer's special requirements
- \checkmark Protection available up to IP 66 (in installed state)
- \checkmark "Asbestos free" linings as standard


Voltages available

- \checkmark Voltages: 24 V DC, 103 V DC, 190 V DC and 207 V DC, other voltages (e.g. 110 V DC) on request.
- \checkmark Coils available to suit: AC supplies with integral Half and Full wave rectification.
- \checkmark We suggest the following alternative Customer to take standard voltage with rectifier which GKN Stromag Dessau can provide.

Designation of individual components

Brake operation

Brakes should be switched on the DC side. (This will achieve fastest response times).

Brakes are FAIL SAFE i.e. Spring Applied. Power on to release.

When the coil is energized, the magnetic flux attracts the armature disc (10) to the coil body, this compresses the springs (21) and releases the friction disc with friction lining (02) and the brake is released.

When the coil is de-energized the compression springs (21) push the armature disc (10) axially against the friction disc with friction lining (02). This is clamped between the armature disc (10) and the brake flange (11) thereby preventing rotation. The braking effect is transmitted through the friction disc with friction lining (02) to the shaft by way of a splined driving hub (15).

NFF

Electromagnetic Spring-Applied Brake

✓ Micro Switch

Optional availability, Inboard Proving Switch, one common contact, one normally open contact and one normally closed contact.

This can be interlocked with motor contactor for parking brake duty, ie. brake release before starting motor.

Brake termination

Three standard versions:

- Flying leads, usually 1 meter long through PG Cable Gland in coil body.
- IP66 Terminal box, for easy connection and removal,
- Versions for AC supply with built-in full wave or half wave rectification inside the Terminal Box.

\checkmark Emergency hand release lever

No setting is required over maximum lining wear, Special bearing mechanism for easy operation and positive feel, Emergency jacking screws available if hand release lever not supplied

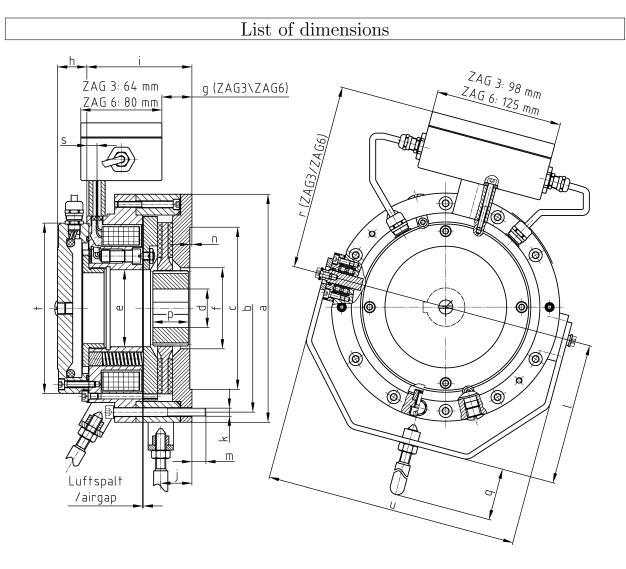
✓ Brake Flange

Manufactured to suit our brake and your motor.

\checkmark Standstill heater

Inboard standstill heater can be provided.

\checkmark Tacho / Encoder


Connections for Tacho / Encoder can be provided as optional extras.

\checkmark Special Surface Finishes

Most of the components can be treated with a protective surface coating for arduous environments; e.g. Dockside Cranes / Deck mounting etc.

Table 1: technical data

size	M_{SN}	$M_{\ddot{U}}$	n_0	nzn	U_n^*	P_k	airgap	W	P_{vn}	J	m
NFF	Nm	Nm	min^{-1}	min^{-1}	VDC	W	min/max	kJ	kW	kgm^2	kg
2	20	22	5300	3000	103	89,9	0,6/1,0	25	0,080	0,0004	6,3
4	40	44	4900	3000	103	90,7	0,6/1,0	30	0,067	0,00043	10,4
6,3	63	70	6500	3000	103	113,9	0,6/1,2	65	0,103	0,0008	13
10	100	110	6500	2500	103	110,4	0,6/1,2	75	0,110	0,00125	14
16	160	175	6000	2400	103	115,8	0,6/1,2	120	0,124	0,0034	21
25	250	275	5600	2100	103	$136,\! 6$	0,6/1,2	150	0,149	0,0043	30
40	400	440	4900	1800	103	212,9	0,6/1,3	250	0,170	0,01212	38
63	630	700	4500	1500	103	227,3	0,6/1,5	320	0,249	0,01463	58
100	1000	1100	3900	1300	103	277,6	0,6/1,6	450	0,270	0,04171	85,5
160	1600	1750	3200	1000	103	353,5	0,6/1,6	450	0,325	0,14821	133
250	2500	2750	2800	900	207	367,0	0,6/1,8	700	0,400	$0,\!23515$	157
400	4000	4400	2400	800	207	400,9	0,6/1,8	750	0,482	$0,\!43412$	286
630	6300	7000	2100	700	207	489,6	0,6/1,8	820	0,601	1,01607	363
1000	10000	11000	1800	650	207	535,5	0,6/2,1	1030	0,587	1,56099	612

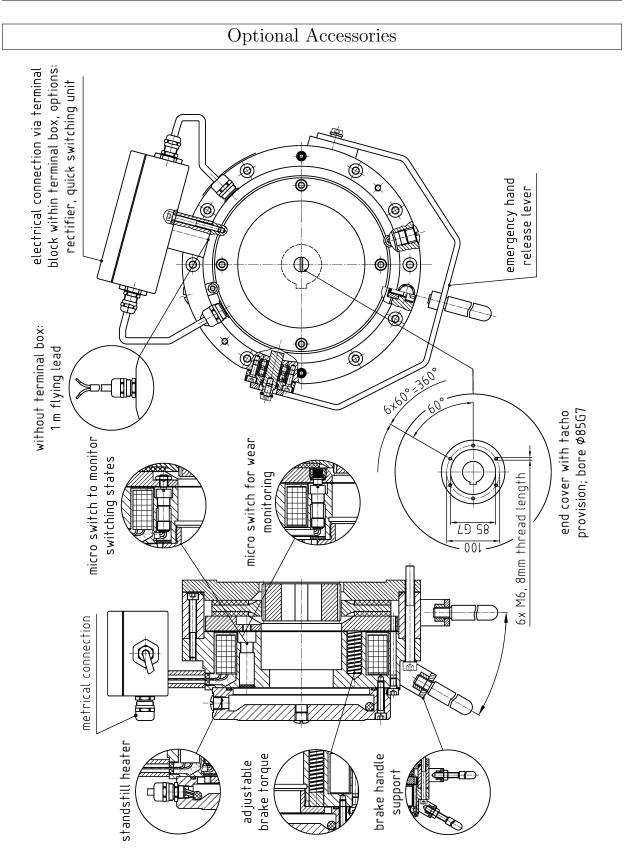
 \ast other voltages on request

NFF

Electromagnetic Spring-Applied Brake

oplies n) ies to

Table 2: list of dimensions	(all	dimensions	in	mm)	ļ
-----------------------------	------	------------	----	-----	---


size NFF	2	4	6.3	10	16	25	40	63	100	160	250	400	630	1000
a	150	165	175	190	225	250	270	314	350	440	500	560	650	750
b	135	152	162	175	190	225	250	292	325	418	472	530	620	710
cH8	120	140	140	160	180	200	220	240	270	340	390	460	530	600
dH7	25	30	40	40	45	50	60	60	80	110	120	130	140	160
e	53	55	55	65	76	78,5	90	96	125	200	215	240	270	300
f	47	80	80	65	80	90	105	120	158	220	255	280	320	330
g_{ZAG3}	15	29	32,6	36	44	61	81	82,6	108		—	—	—	—
g_{ZAG6}	—	15	$18,\! 6$	22	30	47,2	67	$68,\! 6$	94	108,8	116,7	152	148,2	188,4
h	30	33	29	27	29	30	32	32	32	33	30	33	33	32
i	$73,\!5$	$89,\! 6$	$94,\!6$	96	104	121	141	145	168	182,6	191	226	225	265
j	20,9	28	29	29	32	39	40	45	54	57	—	—	—	—
k (6x)	M5	M6	M6	M6	M8	M8	M8	M10	M10	M12	M16	M16	M16	M20
l	95	110	110	123	140	150	170	200	220	290			_	—
m	10,5	7,8	13	14	14	13	14,2	19,5	19	24,4	21,4	26,3	30	30
n	2,5	2,5	2,5	3,5	3,5	3,5	4	4	5	5,5	5	5	6	6
p	24	28	30	30	35	45	45	55	75	125	130	150	185	210
q	110	110	110	110	110	150	150	250	500	95		—	—	—
r_{ZAG3}	113,5	122	126,5	140	157	163	177	194	212	—				
r_{ZAG6}	—	145	149,5	163,5	178	186	199	217	234,5	285,5	312,5	344,5	384	437
s	8,5	10,5	10	10	10	10	10	12	10	10	10	10	10	10
t	123	140	150	146	168	172	184	230	255	255	255	320	320	400
u	179,5	198	201	216	251	276	300	343	408	480				

keyways to DIN6885/1

NFF Electromagnetic Spring-Applied Brake

NFF Electromagnetic Spring-Applied Brake

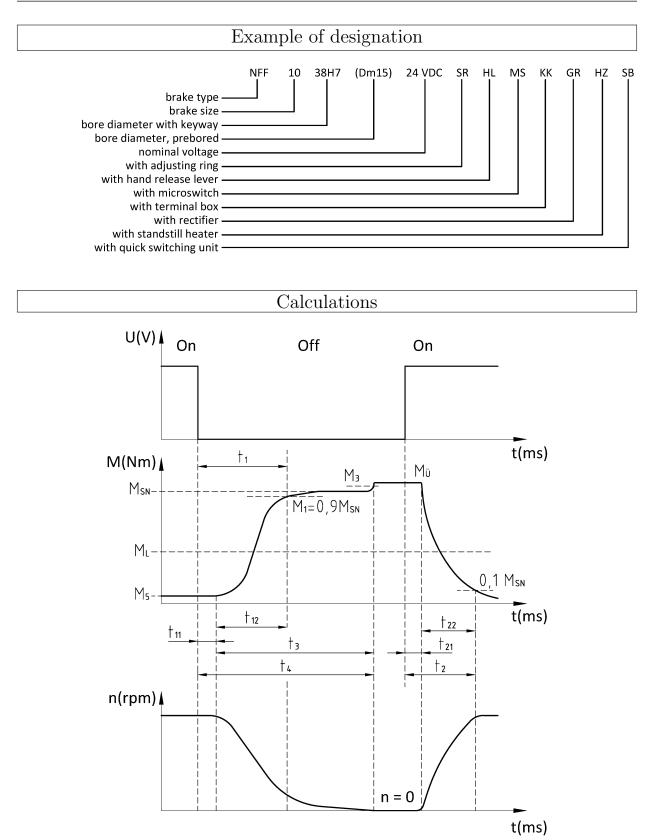


Figure 1: The diagram shows the time response of an electromagnetic spring - applied brake as defined by the VDE regulations 0580

 $M_1 =$ switchable torque [Nm]

The switchable (dynamic) torque is the torque which can be transmitted by a brake under slip condition depending on the friction coefficient and at working temperature. $(M_1 = 0, 9M_{SN})$

 $M_3 =$ synchronization torque [Nm]

The synchronization torque is the torque which arises for a short time after finishing the switching process .

 $M_{\ddot{U}}$ = transmissible torque [Nm]

The transmissible (static) torque is the max. torque that can be applied to a brake without the risk of slipping.

 M_{SN} = switchable nominal torque [Nm]

The switchable nominal torque is the dynamic torque as stated in the catalogue at a frictional speed of 1 m/sec.

 $M_L = \text{load torque } [Nm]$

 $+M_L$ for acceleration, $-M_L$ for deceleration. The load torque should always be considered with relative safety factors.

 $M_5 = \text{no} - \text{load torque} (\text{drag torque}) [Nm]$

The no - load torque is the torque which the brake transmits at working temperature when free running.

 M_A = decelerating torque [Nm]

The decelerating torque results from the addition (substraction for lifting gear during lowering) of the switchable torque and load torque.

Operation times

The operation times shown in the diagram are based on the example of a brake actuated by loss of electrical current. The basic characteristic is also applicable to brakes with alternate methods of operation.

The time delay t_{11} is the time from the instant of de - energization (actuation) to the commencement of the torque build - up (of no importance for d.c. switching). The torque build - up time t_{12} is the time from the commencement of torque build - up to the attainment of 90% of the switchable nominal torque M_{SN} . The switching time t_1 is the sum of the time delay and torque build - up time:

$$t_1 = t_{11} + t_{12}$$

The time delay t_{21} is the time from energization (actuation) to the commencement of the torque will decrease. The fall time t_{22} is the time from the commencement of the torque decrease to 10% of the switchable nominal brake torque M_{SN} . The switching time t_2 is the sum of the time delay and the fall time:

$$t_2 = t_{21} + t_{22}$$

To decrease the switching times of electromagnetic spring - applied brakes, special switching is required. Please ask for particular information. The switching times stated in the dimensional tables apply to d.c. switching, working temperature and nominal voltage without special switching techniques.

NFF Electromagnetic Spring-Applied Brake

Nomenclature

A_R	cm^2	Friction surface
m	kg	Mass
Q	Joule(J)	Heat quantity
Q_h	Watt(W)	Heat per hour
c	$\frac{kJ}{kgK}$	Specific heat steel $c = 0, 46 \frac{kJ}{kgK}$ cast iron $c = 0, 54 \frac{kJ}{kgK}$
n	rpm	Speed
t_A	s	Braking time
t_S	8	Slipping time

Mass moment of inertia $J \ [kgm^2]$

The mass moment of inertia J stated in the formula is the total mass moment of inertia of all the masses to be retarded referred to the brake.

Reduction of moments of inertia

The reduction of moments of inertia is calculated from the formula

$$J_1 = J_2 * (\frac{n_2}{n_1})^2 \qquad [kgm^2]$$

Moments of inertia of linear masses

The equivalent moment of inertia J_{Ers} for a linear mass m and a velocity v referred to the brake speed n is calculated from the formula

$$J_{Ers} = 91 * m(\frac{v}{n})^2 \qquad [kgm^2]$$
$$[v = m/s] \qquad [n = rpm] \qquad [m = kg]$$

Torque considerations for the brake

The mean torque of the driving or driven machine may be calculated from

$$M = 9550 * \frac{P}{n} \qquad [Nm]$$
$$[P = kW] \qquad [n = rpm]$$

If the system includes gearing, all torques must be referred to the brake shaft. Depending on the type and functioning of the driving or driven machine resp. shock and peak loads are an important factor for the determination of brake sizes. If precise deceleration times are required a sufficient decelerating torque must already been taken into account when selecting the brake size on the torque rating. Considering the load torque direction, the following switchable nominal torque M_{SN} of a brake is attained (+ M_L for lifting devices when lowering).

$$M_{SN} = M_A \pm M_L$$

When expressing the decelerating torque M_A by means of the pulse principle, we obtain after corresponding conversion

acceleration by loadbrake support by load $M_A = J * \frac{d\omega}{dt}$ [Nm] $M_A = J * \frac{d\omega}{dt}$ [Nm] $M_{SN} = \frac{J * n}{9,55 * t_a} + M_L$ [Nm] $M_{SN} = \frac{J * n}{9,55 * t_a} - M_L$ [Nm] $t_A = \frac{J * n}{9,55 * (M_{SN} - M_L)}$ [s] $t_A = \frac{J * n}{9,55 * (M_{SN} + M_L)}$ [s]

It is assumed that the dynamic torque is achieved instantaneously. Note that the dynamic torque decreases with the speed. Considerations of dissipated energy

For all operations at speed with slip, dissipated energy is generated in the brake which is transformed into heat. The admissible amount of dissipated energy resp. power capacity must not be exceeded in order to avoid any inadmissible heating. Often the selection of the brake size upon the torque requirement only is not sufficient. Therefore it must always be checked whether the heat capacity of the brake is sufficient. Generally the dissipated energy in a brake, slipping at time dt with its dynamic torque M_S at an angular speed ω_S is:

$$dQ = M_S * \omega_S * dt$$

With ω_S and conversion by means of the pulse principle the following dissipated energy amount is determined for a single deceleration process with existing load torque

acceleration by load

brake support by load

 $Q = \frac{M_{SN}}{M_{SN} - M_L} * \frac{J * n^2}{182000} \qquad [kJ] \qquad \qquad Q = \frac{M_{SN}}{M_{SN} + M_L} * \frac{J * n^2}{182000} \qquad [kJ]$

If a brake slips with constant slipping speed under operation, the dissipated energy is calculated from the formula

$$Q = 0,105 * 10^{-3} * M_S * n_S * t_S$$
 [kJ]

Working brake:

The brake has to brake a shaft with switching frequency "X" from speed "Y" to speed zero and has to hold it.

Holding brake with emergency stop function:

The brake actuates with shaft speed zero and has to hold; in case of emergency, however, it must be able to brake from shaft speed "Y" to zero.

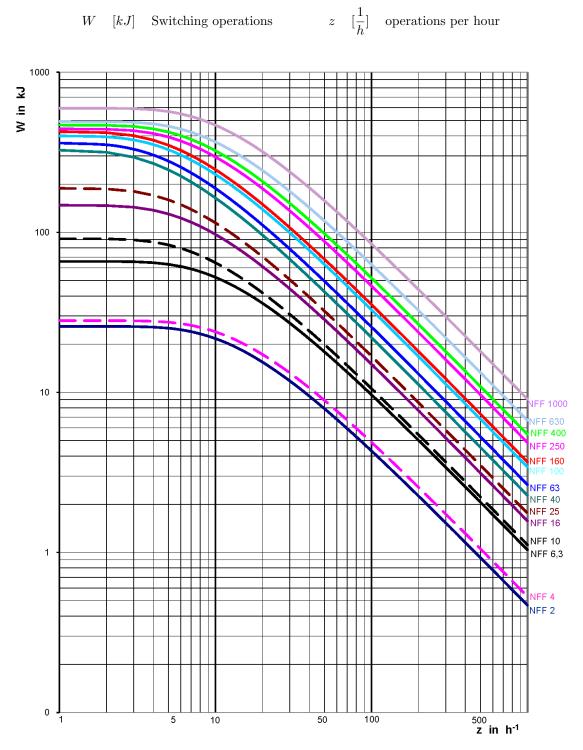


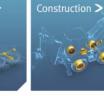
Figure 2: Heat capacity of series NFF n = 1500 rpm **. By known operations and number of operations per hour the brake size can be obtained. Example: W = 100 kJ/operation and z = 10 operations/hour choose the size NFF 25

** permissible switching operations per switching at other speed ratings on request

GKN Stromag Dessau GmbH Dessauer Straße 10 06844 Dessau-Roßlau www.stromag.com

Questionnaire to allow the determination of spring applied brakes

DRIVING MACHINE	
Frequency controlled motor	
Pole changing motor	
Constant speed motor	
Other motor types	
Nominal and maximum power	kW
Nominal and maximum speed	rpm
Maximum torque (i.e. breakdown torque)	Nm
DRIVEN MACHINE	
Slewing system	
Hoisting system	
Trolley or gantry system	
Winch system	
People transporting system	
Other application	
BRAKE TYPE GENERALLY	
Working and emergency brake	
Holding brake with emergency characteristic	
CALCULATION DATA	
Nominal braking speed	rpm
Emergency braking speed (i.e. max. possible overspeed at hoisting drives)	rpm
Load torque at nominal braking speed	Nm
Load torque at emergency braking speed	Nm
Maximum possible load torque	Nm
Number of braking operations per hour at nominal / required speed	
(incl. load data)	
Number of braking operations per required time unit at emergency speed	
(incl. maximum load data)	
Moment of inertia of the parts moved by the motor or braked by the brake	kgm^2
(motor, gearbox, winch etc.)	
Demanded switching cycles of the brake	
Ambient temperature	$^{\circ}C$
Protection class or short description of environmental conditions	
Marine, port, in house	
Options	
Microswitch, rectifier, switching unit, terminal box, heater or other	



GKN LAND SYSTEMS

GKN Land Systems© 2014 PO Box 55, Ipsley House, Ipsley Church Lane, Redditch, Worcestershire B98 0TL P: +44 (0)1527 517 715

INTEGRATED POWERTRAIN COMPONENTS, SYSTEMS AND SOLUTIONS

FROM POWER SOURCE >

Driveshafts >

GKN Stromag Dessau GmbH

Dessauer Str. 10 06844 Dessau-Roßlau P: +49 (340) 2190-203 F: +49 (340) 2190-201 vertrieb.str105@gkn.com www.stromag.com

The GKN Stromag Dessau GmbH is a company of GKN Land Systems

Find out more about GKN Stromag global trade representatives

GKN LS 14 GB 0414 SPM 1-0,1